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1. Introduction

As it is well-known, giant gravitons are stable brane configurations with non-zero angular

momentum, that are wrapped on (n − 2)- or (m − 2)-spheres in AdSm × Sn spacetimes

and carry a dipole moment with respect to the background gauge potential [1 – 4]. They

are not topologically stable, but are at dynamical equilibrium because the contraction due

to the tension of the brane is precisely cancelled by the expansion due to the coupling of

the angular momentum to the background flux field. These spherical brane configurations

turn out to be massless, conserve the same number of supersymmetries and carry the same

quantum numbers of a graviton.

Giant graviton configurations were first proposed as a way to satisfy the stringy ex-

clusion principle implied by the AdS/CFT correspondence [1]. The spherical (n−2)-brane

expands into the Sn part of the geometry with a radius proportional to its angular momen-

tum. Since this radius is bounded by the radius of the Sn, the configuration has associated

a maximum angular momentum. The (m − 2)-brane giant graviton configurations [2, 3],

on the other hand, expand into the AdSm part of the geometry, and they do not satisfy the

stringy exclusion principle. For a discussion on the degeneracy of these two types of giant

gravitons and the point-like graviton, we refer for instance to [5] and references therein.

The construction of giant gravitons has also been generalised to AdS5×Y5 spacetimes,

where Y5 is a Sasaki-Einstein manifold. In [6] and [7] a D3-brane wrapped around the

angular S3 of the AdS5 and moving along the Reeb vector of the Sasaki-Einstein space was

considered, yielding a dual giant graviton. A generalisation of giant graviton configurations

preserving 1/4 or 1/8 of the supersymmetries has also been considered by Mikhailov [8] in

the AdS5 × T 1,1 spacetime.
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In this paper we find a new giant graviton configuration in AdS5×Y5, which consists of a

Kaluza-Klein (KK) monopole with internal angular momentum, wrapping the Y5 part of the

geometry and with Taub-NUT direction in the AdS5 part. This solution has distinguishing

features with respect to the previous giant graviton solutions constructed in the literature.

First, the monopole does not couple to the 4-form potential of the background and the

configuration is therefore not at a dynamical equilibrium position. Still it is stable because

by construction it is wrapped around the entire Y5. Secondly, it has a fixed size L, the

“radius” of the Y5, independent of the momentum of the configuration. In fact the energy

of the monopole depends only on its position in the AdS5 part of the spacetime, and it is

minimised when the monopole sits at the centre of AdS5, where it behaves as a massless

particle. In this sense this new giant graviton configuration does not provide a realisation

of the stringy exclusion principle. However, its mere existence is sufficiently surprising to

motivate a closer look at the configuration. Furthermore, the fact that the giant graviton

is built up from a Kaluza-Klein monopole, could lead to interesting view points in the

context of the AdS/CFT correspondence.

The organisation of this paper is as follows. In section 2 we present the Kaluza-

Klein monopole giant graviton solution. We start by introducing our probe monopole

and then construct an action suitable to describe it. We then calculate the energy of the

configuration and show that when the monopole sits at the centre of AdS5 it behaves as

a massless particle. In section 3 we move to consider the microscopical description of this

configuration in terms of expanding gravitational waves. Given that the fuzzy version of

an arbitrary Sasaki-Einstein manifold is not known, we particularise to the case in which

Y5 = S5. The fuzzy 5-sphere that we consider is defined as an S1 bundle over the fuzzy

CP 2. This fuzzy manifold has been successfully used in the microscopical description of

5-sphere giant gravitons [9, 10], and of the baryon vertex with magnetic flux [11]. In these

examples the fibre structure of the S5 plays a crucial role in the construction. Finally in

section 4 we present a candidate description of our configuration in the field theory side.

We end with some conclusions in section 5.

2. A new giant graviton solution

2.1 The Kaluza-Klein monopole probe

Consider the AdS5×Y5 spacetime, with Y5 a quasi-regular five-dimensional Sasaki-Einstein

manifold. All these Sasaki-Einstein manifolds have a constant norm Killing vector, called

the Reeb vector. For the cases we are interested in, the U(1) action of the Reeb vector is

free and the quotient space is (at least locally) a four-dimensional regular Kähler-Einstein

manifold M4 with positive curvature. In that case the metric on Y5 can (at least locally)

be written as a U(1) fibre bundle over the M4,

ds2
Y = ds2

M + (dψ + B)2, (2.1)

where ds2
M is the metric on the M4 and the Killing vector kµ = δµ

ψ is the Reeb vector. The

Kähler form on M4 is related to the fibre connection B via ωM = 1
2dB.1 The AdS5 × Y5

1For an extensive summary on the properties of Sasaki-Einstein manifolds we refer to [12].
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background contains as well a non-vanishing 4-form RR-potential.

Using the U(1) decomposition above, the metric of AdS5 × Y5 can be written as

ds2 = −
(

1 +
r2

L2

)

dt2 +
dr2

(1 + r2

L2 )
+

r2

4

[

dΩ2
2 + (dχ + A)2

]

+ L2
[

ds2
M + (dψ + B)2

]

, (2.2)

where we have used global coordinates in the AdS part and written the angular S3 contained

in AdS5 as a U(1) fibre over S2. A and B stand for the connections of the S3 and Y5 fibre

bundles respectively. In these coordinates, the fibre directions χ and ψ are clearly globally

defined isometry directions.

Consider now a KK-monopole wrapped on the Y5, with Taub-NUT direction χ and

propagating along ψ. This will be our KK-monopole probe. In order to study the dynamics

of this monopole we start by constructing an action suitable to describe it.

The effective action describing the dynamics of the Type IIB Kaluza-Klein monopole

was constructed in [13]. Like the Type IIA NS5-brane, to which it is related by T-

duality along the Taub-NUT direction, the action for the monopole is described by a

six-dimensional (2, 0) tensor supermultiplet, which contains a self-dual 2-form Ŵ+
ab and 5

scalars {Xi, ω, ω̃}. The self-dual 2-form is associated to the (S-duality invariant) configu-

ration of the monopole intersecting a D3-brane, wrapped on the Taub-NUT direction. The

worldvolume scalars ω and ω̃ are associated with the intersections of D5- and NS5-branes

respectively, and form a doublet under S-duality. Finally the scalars Xi (with i = 1, 2, 3)

are the embedding scalars, that describe the position of the monopole in the transverse

space. Note that although the worldvolume of the monopole is six-dimensional, its position

is specified by only three embedding scalars. This is because the Taub-NUT direction is

considered to be transverse, but being an isometry direction it does not yield a dynamical

degree of freedom. The KK-monopole action takes in fact the form of a gauged sigma

model, where the degree of freedom corresponding to the Taub-NUT direction is gauged

away [14]. Due to the presence of the self-dual two-form Ŵ+
ab, there is no straightforward

covariant formulation of the action (see for example [15]). However, like in the case of

the five-brane [16, 17], it is possible to give an approximation, expanding the action to

quadratic order in the self-dual two-form.

In our case, the situation is actually simpler. As our KK-monopole probe is wrapped

around Y5, the U(1) fibre direction ψ is contained in its worldvolume. Therefore it is

possible to effectively compactify the monopole over the fibre direction and to consider the

(much simpler) action for a wrapped KK-monopole. Moreover, momentum charge along

this U(1) fibre direction can easily be induced by switching on an appropriate magnetic

flux in the worldvolume.

The field content of the wrapped monopole is given by the five-dimensional (1, 1)

vector multiplet, which contains 5 scalars and one vector, and is the dimensional reduction

of the six-dimensional (2, 0) tensor multiplet. The self-duality condition becomes a Hodge-

duality condition between the vector and a two-form, which does not appear explicitly in

the action.2 In this way an action can be constructed to all orders in the field strength. In

2This is very similar to the M5-brane case. The unwrapped M5-brane contains a self-dual 2-form
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practise, the action of the wrapped monopole is most easily constructed from the action

of the Type IIA KK-monopole, as the latter has the six-dimensional (1, 1) vector multiplet

as its worldvolume field content [18]. After T-dualising along a worldvolume direction, the

resulting action describes a Type IIB monopole wrapped along the T-duality direction,

with an effectively five-dimensional worldvolume. As our KK-monopole probe is wrapped

on the S1 fibre direction of the Y5, its spatial worldvolume becomes effectively R × M4.

2.2 The action for the wrapped monopole

The starting point is the action for the Type IIA Kaluza-Klein monopole constructed in [18],

which we compactify along a worldvolume direction and T-dualize. The resulting action

describes a Type IIB Kaluza-Klein monopole which is wrapped on the T-duality direction

and has, effectively, a five-dimensional worldvolume. The T-duality direction appears in

the action as a new isometric direction, whose Killing vector we denote by kµ. On the

other hand the Killing vector associated with the Taub-NUT direction is denoted by ℓµ.

The explicit action is given by

S = −T4

∫

d5σ e−2φkℓ2
√

|det(DaXµDbXνgµν + eφk−1ℓ−1Fab)|

−T4

∫

d5σ
{

P [ikiℓN
(7)] − P

[

iℓC
(4)

]

∧ F − 1

2
P

[k(1)

k2

]

∧ F ∧ F + . . .
}

, (2.3)

where the scalars k and ℓ are the norm of kµ and ℓµ respectively, k(1) denotes the 1-form

with components kµ and (iℓikΩ)µ1...µn
= ℓρkνΩνρµ1...µn

. In this action the pull-backs into

the worldvolume are taken with gauge covariant derivatives

DaX
µ = ∂aX

µ − k−2kν∂aX
νkµ − ℓ−2ℓν∂aX

νℓµ, (2.4)

which ensure local invariance under the isometric transformations generated by the two

Killing vectors

δXµ = Λ(1)(σ)kµ + Λ(2)(σ)ℓµ . (2.5)

In this way the embedding scalars corresponding to the isometry directions are eliminated

as dynamical degrees of freedom and the action is given by a gauged sigma model of the

type first considered in [14].

The two-form field strength F is defined as

F = 2∂V (1) + P [ikiℓC
(4)] , (2.6)

where the worldvolume vector field V (1) is the T-dual of the vector field of the Type

IIA monopole (or, alternatively, the dimensional reduction of the self-dual two-form Ŵ+).

While in the Type IIA monopole the vector field is associated to D2-branes wrapped on

the Taub-NUT direction, in the IIB case it is associated to D3-branes, wrapped on both

Killing directions.

in its worldvolume, whereas the M5-brane wrapped on the eleventh direction (the D4) depends on an

unconstrained five-dimensional vector field.
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The action of the Type IIA monopole contains as well a worldvolume scalar associated

to strings wrapped on the Taub-NUT direction. This field gives, upon T-duality, a world-

volume scalar ω which forms a doublet under S-duality with the T-dual ω̃ of the component

of the IIA vector field along the T-duality direction. These two scalars are necessary in

order to compensate for the two degrees of freedom associated to the two transverse scalars

that have been eliminated from the action through the gauging procedure. This scalar dou-

blet does however not play a role in our construction and has therefore been set to zero in

our action above. The action (2.3) should then be regarded as a truncated action suitable

for the study of the wrapped monopole in the AdS5 × Y5 background.

In the Chern-Simons part of the action we find a coupling to N (7), the tensor field dual

to the Taub-NUT Killing vector ℓµ, considered as a 1-form. The contraction iℓN
(7) is the

field to which a KK-monopole with Taub-NUT direction ℓµ couples minimally (see [18]).

In (2.3) this field is further contracted with the second isometric direction kµ, indicating

that the monopole is wrapped along this direction. More importantly for our construction

below, the second coupling in the CS action involves the momentum operator P [k(1)/k2],

associated to the isometric direction with Killing vector kµ. Therefore, it is possible to

induce momentum charge in this isometric direction, with an appropriate choice of F .

As we will show below, we will make use of this coupling to let the monopole propagate

along the isometric direction ψ. Finally, the dots indicate couplings to other Type IIB

background fields which do not play a role in our construction.

2.3 The giant graviton solution

Let us now particularise the action (2.3) to our probe KK-monopole. We take our monopole

wrapped on the transverse Y5. Therefore the fibre direction of the decomposition of Y5 as

a U(1) fibre bundle over M4 is identified as the isometric worldvolume direction in (2.3),

and M4 as the effective four-dimensional spatial worldvolume. The Taub-NUT direction

is taken along the S1 fibre direction of the S3 contained in AdS5. Therefore, we have

explicitly

kµ = δµ
ψ , ℓµ = δµ

χ. (2.7)

With this choice of Killing directions the contribution of the 4-form RR-potential of the

AdS5 × Y5 background to the action vanishes. This is so because both couplings to C(4),

in (2.6) and in (2.3), involve directions along Y5, plus the Taub-NUT direction, χ, which

lives in the AdS5 part of the spacetime.

Furthermore, in order to induce momentum charge in the ψ direction we choose the

worldvolume vector field V proportional to the curvature tensor of the Y5 fibre connection

B, such that

F = ∗F ,

∫

M

F ∧ F = 2n2ΩM , (2.8)

where ΩM is the volume of M4 and the Hodge star is taken with respect to the metric on

this manifold3. With this Ansatz F satisfies trivially the Bianchi identities. Then, through

3The integral above is non-zero because it is the product of two integrals,
H

F , over non-trivial two-

cycles in M4 (see for example [19]). Since
H

F = 2πn due to Dirac quantisation condition, n represents the

– 5 –
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the second coupling in the Chern-Simons part of the action (2.3), we have that

T4

2

∫

R×M4

P
[

k−2k(1)
]

∧ F ∧ F = n2TW

∫

dt P
[

k−2k(1)
]

, (2.9)

where we have used the fact that the tension of the wrapped monopole is related to the

tension of the point-like object carrying momentum charge (the gravitational wave) through

ΩMT4 = TW . Therefore, with this Ansatz for F , we are dissolving in the worldvolume

n2 momentum charges in the ψ direction. Notice that the instantonic nature of (2.8)

guarantees that the equations of motion for F are satisfied.

A second remarkable property of the Ansatz (2.8) is that the determinant of (P [g]ab +

Fab) is a perfect square [9, 11], such that the Born-Infeld part of the action (2.3) gives rise

to

S = −T4

∫

dt dΩM
Lr2

4

√

(

1 +
r2

L2

)[L4

8
+

4n2

L2r2

]2
|gM |, (2.10)

which after integration over M4 gives rise to the following Hamiltonian

H =
n2TW

L

√

1 +
r2

L2

[

1 +
L6r2

32n2

]

. (2.11)

The energy of the configuration is therefore a function of the radial coordinate r of

AdS5 and is clearly minimised when r = 0, that is, when the monopole is sitting at the

centre of AdS5. Moreover, for this value of r the energy is given by

E =
n2T0

L
=

Pψ

L
. (2.12)

Therefore, the configuration that we have proposed behaves as a giant graviton: it has

the energy of a massless particle with momentum Pψ but clearly has some finite radius L,

as it is wrapped around the entire Y5. Since it saturates a BPS bound it is a solution of

the equations of motion. Finally, we should note that there is no dynamical equilibrium

between the brane tension and the angular momentum, as in the traditional giant graviton

configurations of [1 – 4]. However the stability of the configuration is still guaranteed due

to the fact that it wraps the entire transverse space.

3. A microscopical description in terms of dielectric gravitational waves

It is by now well-known that the traditional giant graviton configurations of [1 – 4] can be

described microscopically in terms of multiple gravitational waves expanding into (a fuzzy

version of) the corresponding spherical brane by Myers’ dielectric effect [20]. In particular,

the M5-brane giant graviton configurations of the AdS4 × S7 and AdS7 × S4 spacetimes

have been described in terms of multiple M-waves expanding into a fuzzy 5-sphere that is

defined as an S1 bundle over a fuzzy CP 2 [9]. A non-trivial check of the validity of this

winding number of D3-branes wrapped around each of the two cycles. For our construction we have chosen

the same winding number in both cycles in order to preserve the self-duality condition (2.8).

– 6 –
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description is that it agrees exactly with the spherical brane description in [1, 2] when the

number of gravitons is very large.

In this spirit one would expect that the KK-monopole giant graviton configuration

constructed in the previous section would be described microscopically in terms of dielectric

Type IIB gravitational waves expanding into a fuzzy Y5. The fuzzy version of general quasi-

regular Sasaki-Einstein manifolds is however not known. Therefore we will restrict to the

case in which Y5 coincides with the 5-sphere. In this case we will see that the waves expand

into a fuzzy 5-sphere, defined as an S1 bundle over a fuzzy CP 2, i.e. the same type of fuzzy

manifolds involved in the description used in [9] (see also [10, 11]).

Consider now a number N of coinciding gravitational waves in the AdS5 × S5 back-

ground. The action describing multiple gravitational waves in Type IIB was constructed

in [21, 22] and it contains the following couplings:

SW = − TW

∫

dτ STr
{

k−1

√

−P
[

Eµν − Eµi(Q−1 − δ)ijEjkEkν

]

det Q
}

(3.1)

+ TW

∫

dτ STr
{

−P [k−2k(1)] − iP [(iX iX)iℓC
(4)] − 1

2P [(iX iX)2iℓikN
(7)] + . . .

}

where

Eµν = Gµν − k−1ℓ−1(ikiℓC
(4))µν , Gµν = gµν − k−2kµkν − ℓ−2ℓµℓν ,

Qµ
ν = δµ

ν + ikℓ [Xµ,Xρ]Eρν , ((iX iX)iℓC4)λ = [Xρ,Xν ]ℓµCµνρλ. (3.2)

(iℓikΩ)µ1...µn
= ℓρkνΩνρµ1...µn

,

This action is valid to describe waves propagating in backgrounds which contain two

isometric directions, parametrised in the action by the Killing vectors kµ and ℓµ. The wave

action is actually a gauged sigma model in which the embedding scalars associated to the

Killing directions are projected out. The physical meaning of kµ is that it corresponds

to the propagation direction of the gravitational waves, while ℓµ is an isometry direction

inherited from the T-duality operation involved in the construction of the action (see [21]

and [22] for more details).

Although the only non-zero term in the Chern-Simons action in the AdS5 × S5 back-

ground is the dipole coupling to C(4), it is worth calling the attention to the quadrupole

coupling to N (7). Indeed, this coupling shows that the waves can expand via a quadrupole

effect into a monopole with Taub-NUT direction parametrised by lµ and further wrapped

around the kµ direction. This monopole will then act as the source of iℓikN
(7).

Let us now use the action (3.1) to describe microscopically the KK-monopole of the

previous section in the AdS5 × S5 background. In this case M4 = CP 2 and ds2
M stands

for the Fubini-Study metric on the CP 2 (see for instance [23]). The identification of the

isometry directions of (3.1) is then obvious. In order to account for the momentum in

the worldvolume of the monopole, we identify the propagation direction of the waves with

the S5 fibre direction ψ, while the extra isometry will be identified with the Taub-NUT

direction χ of the monopole:

kµ = δµ
ψ, ℓµ = δµ

χ. (3.3)

– 7 –
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With this choice of Killing vectors it is clear that the contribution of C(4) to the action

vanishes, both in the BI and in the CS parts. Therefore, any dielectric effect will be purely

gravitational [24 – 26].

Furthermore, we will have the gravitational waves expand into the entire five-sphere,

whose fuzzy version we choose to describe as an S1 bundle over the fuzzy CP 2. Therefore,

we take the non-commutative scalars in (3.1) to parametrise the fuzzy CP 2 base of the S5.

The fuzzy CP 2 has been extensively studied in the literature. For its use in the giant

graviton context we refer to [9, 10], where more details on the construction that we sketch

below can be found. CP 2 is the coset manifold SU(3)/U(2) and can be defined as the

submanifold of R
8 determined by the constraints

8
∑

i=1

xixi = 1 ,
8

∑

j,k=1

dijkxjxk =
1√
3
xi , (3.4)

where dijk are the components of the totally symmetric SU(3)-invariant tensor. A fuzzy

version of CP 2 can then be obtained by imposing the conditions (3.4) at the level of

matrices (see for example [27]). We define a set of coordinates Xi (i = 1, . . . , 8) as

Xi =
T i

√

(2N − 2)/3
, (3.5)

where T i are the SU(3) generators in the N -dimensional irreducible representations (k, 0)

or (0, k), with N = (k + 1)(k + 2)/2. The first constraint in (3.4) is then trivially satisfied

through the quadratic Casimir (2N −2)/3 of the group, whereas the rest of the constraints

are satisfied for any N (see [27, 9] for the details). The commutation relations between the

Xi are given by

[Xi,Xj ] =
i f ijk

√

(2N − 2)/3
Xk, (3.6)

with f ijk the structure constants of SU(3) in the algebra of the Gell-Mann matrices

[λi, λj ] = 2if ijkλk.

Substituting the Ansätze (3.5) and (3.3) in the action (3.1), we find

S = −TW

∫

dτ STr

{

L−1

√

(

1 +
r2

L2

)[

l1 +
3L6r2

32(N − 1)
X2

]2
}

, (3.7)

up to order N−2. Here we have dropped those contributions to det Q that vanish when

taking the symmetrised trace, and ignored higher powers of N which will vanish in the

large N limit.4

Taking the symmetrised trace we arrive at the following Hamiltonian

H =
NTW

L

√

1 +
r2

L2

[

1 +
L6r2

32(N − 1)

]

, (3.8)

4These terms cannot be nicely arranged into higher powers of the quadratic Casimir without explicit

use of the constraints.
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which, in the large N limit, is in perfect agreement with the Hamiltonian for the spherical

KK-monopole, given by (2.11). To see this we should recall that in the macroscopical

description the momentum charge of the configuration is the number of waves dissolved

in the worldvolume, and is therefore given by n2. In the microscopical description the

momentum charge is given directly by the number of microscopic waves, N . Therefore in

the large N limit N and n2 must coincide. The Hamiltonian in (3.8) is also a function

of the radial coordinate r of AdS5 and it is minimised at r = 0 where it takes the value

E = Pψ/L, thus corresponding to a giant graviton configuration.

4. A possible interpretation in the dual field theory

In this section we try to give a possible field theoretic interpretation of the giant graviton

configuration that we have studied, along the lines of [3] (see also [28 – 31]). We will discuss

the giant graviton configuration in the AdS5 × S5 background, but we will later speculate

on a possible generalisation to other Sasaki-Einstein spaces.

We have learnt in the previous sections that the fibre direction in the S3 contained in

AdS5 plays a crucial role in the construction of the giant graviton configuration, as it is

identified with the Taub-NUT direction of the monopole. Therefore, it is useful to work in

the global patch for AdS.

It is then natural to consider the dual field theory as living in R × S3, where there is

a conformal coupling to the curvature. The bosonic piece of the action reads

S =
1

2

∫

dt dΩ3 Tr
{

∂µΦ∗
a∂

µΦa +
1

L2
Φ∗

aΦa +
1

4g2
[Φa,Φ

∗
b ]

2
}

, (4.1)

where L is the radius of the S3 and the Φa (with a = 1, 2, 3) are the complexification of the

6 adjoint real scalars Xi of N = 4 SYM. After defining Φa = Xa + iXa+3, only an SU(3)

subgroup of the original SO(6) R-symmetry group remains explicit.

Regarding S3 as an S1 bundle over S2 it seems a consistent truncation to assume

that the Φa do not depend on the fibre coordinate. Actually, this will be the field theory

analogue of the fact that this direction corresponds to the Taub-NUT direction of the

monopole on the gravity side. Taking adapted coordinates to the U(1) fibration we have

S = 2π

∫

dt

∫

dΩ2 Tr
{

− ∂tΦ
∗
a∂tΦa − 4Φ∗

a∆S2Φa +
1

L2
Φ∗

aΦa +
1

4g2
[Φa,Φ

∗
b ]

2
}

, (4.2)

where ∆S2 is the Laplacian in the 2-sphere.

We can then expand the scalars in spherical harmonics Φ
(lm)
a on the two-sphere. Given

that we will be interested in the lowest energy modes, we will truncate all of them except

the massless mode Φ
(0)
a , which corresponds to the constant mode on the S2. Furthermore,

we consider the following Ansatz for the gauge and SU(3) dependence of our fields

Φ(0)
a = eif(t)Ma ⊗ Ja, (4.3)

where f(t) is an arbitrary function of time, the traceless matrix Ma is defined as

Ma = diag
(

va,−
va

M − 1
, · · · ,− va

M − 1

)

, (4.4)
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and the Ja’s are SU(2)-generators in a k-dimensional representation. Since the total rank

of the gauge group is N we should have that kM = N . Indeed, in this branch the gauge

group breaks into SU(M). The gauge transformations which are left are those of the form

Φa → gΦag
†, g = diag(g̃k, · · · , g̃k) , (4.5)

where the g̃ki
are SU(2) gauge transformations of dimension k.

The action then reduces to

S = 8π2 C2(k)M

M − 1

∫

dt
[

− (f ′)2v2 +
v2

L2

]

, (4.6)

where v2 = δabvavb is to be interpreted as a non-dynamical parameter whose value will

determine the minima of the potential. In addition, C2(k) is the Casimir of the SU(2)

k-dimensional representation. In this action f(t) is a cyclic variable and therefore its

conjugate momentum, p, will be conserved. The Hamiltonian is given by

H = p2 (M − 1)

32π2v2C2(k)M
+

8π2MC2(k)v2

(M − 1)L2
, (4.7)

which has a minimum for v2 = (M−1)
32π2C2(k)M

pL. Remarkably the on-shell energy is precisely

the dispersion relation

E =
p

L
. (4.8)

Therefore, the configuration (4.3) can be seen as a massless particle. Furthermore, out of

the original SU(3) rotating our Φa just an SU(2) survives, given that with our Ansatz the

Φa become a vector of SU(2). Thus, the moduli space reduces to SU(3)/U(2), which is

precisely the symmetry of CP 2 as a coset space, which is in turn the manifold wrapped by

our KK-monopole.

Given that our construction of the wrapped KK-monopole works not just in the S5

case, but also in more generic spaces, we expect a similar field theory description for the

dual of a generic Sasaki-Einstein space. In supporting this claim, let us notice that the

potential term did not play any role in the S5 case, because with the Ansatz we assumed,

it vanishes. In the generic case, we will assume a similar Ansatz for our fields, namely

Xα = eif(t)M⊗ Gα , (4.9)

where now for simplicity we take the same M matrix as before but with all the v’s identical.

The Gα are the generators of the global symmetry group G. Given this Ansatz, we expect

that the superpotential does not play any role, not even in the most generic Y p,q case. In

addition, since we take AdS in the global patch, the field theory will be defined in R× S3,

so we will always have the conformal coupling to the curvature. Just this term, together

with the kinetic energy, is enough to reproduce a dispersion relation of the form E ∼ p.

In the general case we can also regard the S3 as an S1 bundle over S2, and take our

fields independent of the U(1). This is the field theory counterpart of the presence of the

Taub-NUT direction in the gravity side. In addition, out of the full global symmetry group
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G we will just keep the subgroup g compatible with our Ansatz,5 so we would expect a

moduli space of the form G/g. Let us consider for example the conifold. In this case

the global symmetry group is SU(2) × SU(2). Therefore we have to first reduce it to the

diagonal SU(2) and then take the conifold scalars A and B to be eif(t)M. This leaves an

[SU(2)× SU(2)]D/U(1) moduli space, which is the symmetry of 2 2-spheres, and this is in

turn what one would get from the gravity side.

Finally, we would like to note that our construction is quite generic. From the gravity

point of view we just require that the momentum of the KK-monopole wrapping the five-

dimensional space is taken along a U(1) fibre direction, and that its Taub-NUT direction

is along the S1 in the decomposition of the S3 ⊂ AdS5 as an S1 bundle over S2. In the

field theory side our requirements are also quite generic. The existence of the Taub-NUT

direction is reflected on the fact that the SCFT is defined in R × S3 and S3 is taken as

S1 over S2. In addition, our description is not sensitive to the superpotential, which we

believe is the counterpart to the fact that the KK-monopole wraps the whole 5-dimensional

manifold. Then, we are left with the kinetic term and the conformal coupling to curvature,

which is enough to ensure the right dispersion relation. Since in general our Ansatz will

reduce the original global symmetry, the moduli space will be G/g, which we believe will

correspond in general to the symmetry of the 4-dimensional base which the KK-monopole

wraps.

5. Conclusions

In this letter we have constructed a new type of giant graviton solution in AdS5 × Y5,

with Y5 a quasi-regular Sasaki-Einstein manifold. This solution consists on a Kaluza-Klein

monopole with internal momentum, wrapped around the entire Y5 and with Taub-NUT

direction along the AdS5 part.

Although the dynamics of this monopole can be described using the effective action

for the Type IIB Kaluza-Klein monopole constructed in [13], this action is only known

to quadratic order in the self-dual 2-form of its six-dimensional (2, 0) tensor multiplet

field content. However, given that Y5 can be decomposed as a U(1) bundle over a four-

dimensional Kähler-Einstein manifold M4, it is possible to use the action for a monopole

wrapped on a U(1) direction to describe it. This action, having the field content of the five-

dimensional (1, 1) vector multiplet, is known to all orders. Moreover, it is possible to induce

momentum charge along the U(1) direction through a suitably chosen worldvolume vector

field with non-zero instanton number. Using the action for a U(1) wrapped monopole we

have shown that the energy of the configuration depends on its radial position in the AdS

space and behaves as a massless particle when put in the origin, while having the size of

the Y5.

Given that the spherical monopole carries a non-vanishing momentum charge there

should be a microscopical description of the same configuration in terms of expanding

gravitational waves. This description would involve however the fuzzy version of Y5, which

5Note that g may involve discrete subgroups such as Zk
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is not known in general. Therefore, we have restricted to the case in which Y5 = S5, and

let the multiple dielectric gravitational waves expand into a fuzzy 5-sphere. The fuzzy

5-sphere built up by the gravitational waves is constructed as an Abelian fibre bundle over

a fuzzy CP 2, a construction that has been used before in the study of the traditional giant

gravitons and the baryon vertex with magnetic flux. The configuration thus obtained turns

out to exactly agree in the limit of large number of waves with the effective KK-monopole

description.

We believe there are several reasons why this new giant graviton solution has not

been found earlier in the literature. First of all, since it has no relation with the stringy

exclusion principle it is not straightforward to find the corresponding state in the CFT

side. Moreover, as we have shown in section 4, our scalar field configuration breaks the

R-symmetry group in a rather peculiar way, making explicit the U(1) fibre structure of the

S3. Secondly, the fact that it is built up from a Kaluza-Klein monopole and not from a

more ordinary type of brane, makes our construction more involved.

An interesting question to answer would be whether the KK-monopole giant graviton

solution is supersymmetric or not. This is however difficult to answer, on the one hand

due to the form of the Killing spinors in the particular coordinate system that we are using

and, on the other hand, due to the fact that the kappa-symmetry for the Kaluza-Klein

monopole is not known. Yet, the fact that the configuration is massless implies that it

saturates a BPS bound, which hints to the fact that it probably preserves some fraction of

the supersymmetry. We would like to leave this problem for future investigations.
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